If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+69x-36=0
a = 6; b = 69; c = -36;
Δ = b2-4ac
Δ = 692-4·6·(-36)
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5625}=75$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(69)-75}{2*6}=\frac{-144}{12} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(69)+75}{2*6}=\frac{6}{12} =1/2 $
| 9s-6-4s=189 | | q-235=586 | | 5/a+2/3=1/6 | | y+742=337 | | 27+c=108 | | 9x-25=5x+27 | | r=250 | | g+171=477 | | (7x+5)+36+90=180 | | (51)=(9y-6) | | m/29=22 | | 2((y+6)=2y | | 2(x+4.5)=12 | | -6c=-10c+4c | | j+750=44 | | (8x-17)+51+x=180 | | -33=(-7)=29+m | | 7,475x-2,405=65(115x-37) | | (c=7)5c-8 | | y+548=349 | | 8x+15x-4=180 | | (4x-5)=72 | | b+22=26 | | k-30=140 | | 8x=15x-4 | | 672=16r | | (15x-4)+(8x)=180 | | 17x+66=17x+2 | | q+220=860 | | 8/7=v/12 | | `3a-5=7 | | 7a-5a=4 |